Termo de erro

Publicado por Javier Ricardo

O que é um termo de erro?


Um termo de erro é uma variável residual produzida por um modelo estatístico ou matemático, que é criado quando o modelo não representa totalmente a relação real entre as variáveis ​​independentes e as variáveis ​​dependentes.
Como resultado dessa relação incompleta, o termo de erro é o valor no qual a equação pode diferir durante a análise empírica.


O termo de erro também é conhecido como residual, perturbação ou termo remanescente e é representado de várias maneiras nos modelos pelas letras
e, ε ou u.


Principais vantagens

  • Um termo de erro aparece em um modelo estatístico, como um modelo de regressão, para indicar a incerteza no modelo.
  • O termo de erro é uma variável residual responsável pela falta de adequação perfeita do ajuste.
  • Heteroscedástico se refere a uma condição na qual a variância do termo residual, ou termo de erro, em um modelo de regressão varia amplamente.

Compreendendo um termo de erro


Um termo de erro representa a margem de erro em um modelo estatístico;
refere-se à soma dos desvios dentro da linha de regressão, o que fornece uma explicação para a diferença entre o valor teórico do modelo e os resultados reais observados. A linha de regressão é usada como um ponto de análise ao tentar determinar a correlação entre uma variável independente e uma variável dependente.

Uso do termo de erro em uma fórmula


Um termo de erro significa essencialmente que o modelo não é totalmente preciso e resulta em resultados diferentes durante as aplicações do mundo real.
Por exemplo, suponha que haja uma função de regressão linear múltipla que assume a seguinte forma: 

Y=αX+βρ+ϵOnde:α,β=Parâmetros constantesX,ρ=Variáveis ​​independentesϵ=Termo de erro\ begin {alinhamento} & Y = \ alpha X + \ beta \ rho + \ epsilon \\ & \ textbf {onde:} \\ & \ alpha, \ beta = \ text {Parâmetros constantes} \\ & X, \ rho = \ text {Variáveis ​​independentes} \\ & \ epsilon = \ text {Termo de erro} \\ \ end {alinhado}Y = α X + β ρ + ϵOnde:α , β = Parâmetros constantesX , ρ = variáveis ​​independentesε = termo de erro


Quando o Y real difere do Y esperado ou previsto no modelo durante um teste empírico, o termo de erro não é igual a 0, o que significa que há outros fatores que influenciam Y.

O que os termos de erro nos dizem?


Em um modelo de regressão linear que acompanha o preço de uma ação ao longo do tempo, o termo de erro é a diferença entre o preço esperado em um determinado momento e o preço realmente observado.
Nos casos em que o preço é exatamente o que foi antecipado em um determinado momento, o preço cairá na linha de tendência e o termo de erro será zero.


Pontos que não caem diretamente na linha de tendência exibem o fato de que a variável dependente, neste caso, o preço, é influenciada por mais do que apenas a variável independente, representando a passagem do tempo.
O termo de erro representa qualquer influência exercida sobre a variável de preço, como mudanças no sentimento do mercado.


Os dois pontos de dados com a maior distância da linha de tendência devem estar a uma distância igual da linha de tendência, representando a maior margem de erro.


Se um modelo é heteroscedástico, um problema comum na interpretação correta de modelos estatísticos, ele se refere a uma condição na qual a variância do termo de erro em um modelo de regressão varia amplamente.

Regressão Linear, Termo de Erro e Análise de Estoque


A regressão linear é uma forma de análise que se relaciona às tendências atuais experimentadas por um determinado título ou índice, fornecendo uma relação entre variáveis ​​dependentes e independentes, como o preço de um título e a passagem do tempo, resultando em uma linha de tendência que pode ser usado como um modelo preditivo.


Uma regressão linear exibe menos atraso do que a experimentada com uma média móvel, pois a linha é ajustada aos pontos de dados em vez de ser baseada nas médias dentro dos dados.
Isso permite que a linha mude mais rápida e dramaticamente do que uma linha baseada na média numérica dos pontos de dados disponíveis.

A diferença entre termos de erro e resíduos


Embora o termo de erro e residual sejam frequentemente usados ​​como sinônimos, há uma diferença formal importante.
Um termo de erro geralmente não é observável e um residual é observável e calculável, tornando-o muito mais fácil de quantificar e visualizar. Com efeito, embora um termo de erro represente a forma como os dados observados diferem da população real, um resíduo representa a forma como os dados observados diferem dos dados da amostra da população.